Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
PLoS One ; 18(2): e0276829, 2023.
Article in English | MEDLINE | ID: covidwho-2228656

ABSTRACT

Antibodies against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) target multiple epitopes on different domains of the spike protein, and other SARS-CoV-2 proteins. We developed a SARS-CoV-2 multi-antigen protein microarray with the nucleocapsid, spike and its domains (S1, S2), and variants with single (D614G, E484K, N501Y) or double substitutions (N501Y/Deletion69/70), allowing a more detailed high-throughput analysis of the antibody repertoire following infection. The assay was demonstrated to be reliable and comparable to ELISA. We analyzed antibodies from 18 COVID-19 patients and 12 recovered convalescent donors. The S IgG level was higher than N IgG in most of the COVID-19 patients, and the receptor-binding domain of S1 showed high reactivity, but no antibodies were detected against the heptad repeat domain 2 of S2. Furthermore, antibodies were detected against S variants with single and double substitutions in COVID-19 patients who were infected with SARS-CoV-2 early in the pandemic. Here we demonstrated that the SARS-CoV-2 multi-antigen protein microarray is a powerful tool for detailed characterization of antibody responses, with potential utility in understanding the disease progress and assessing current vaccines and therapies against evolving SARS-CoV-2.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Antibodies, Neutralizing/genetics , Antibodies, Neutralizing/immunology , Antibodies, Viral/genetics , Antibodies, Viral/immunology , Antibody Formation/genetics , Antibody Formation/immunology , COVID-19/genetics , COVID-19/immunology , COVID-19/virology , Immunoglobulin G , Protein Array Analysis , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus
2.
Commun Biol ; 5(1): 1096, 2022 Oct 16.
Article in English | MEDLINE | ID: covidwho-2077125

ABSTRACT

Herpes simplex virus (HSV) receptor engagement activates phospholipid scramblase triggering Akt translocation to the outer leaflet of the plasma membrane where its subsequent phosphorylation promotes viral entry. We hypothesize that this previously unrecognized outside-inside signaling pathway is employed by other viruses and that cell-impermeable kinase inhibitors could provide novel antivirals. We synthesized a cell-impermeable analog of staurosporine, CIMSS, which inhibited outer membrane HSV-induced Akt phosphorylation and blocked viral entry without inducing apoptosis. CIMSS also blocked the phosphorylation of 3-phosphoinositide dependent protein kinase 1 and phospholipase C gamma, which were both detected at the outer leaflet following HSV exposure. Moreover, vesicular stomatitis virus pseudotyped with SARS-CoV-2 spike protein (VSV-S), but not native VSV or VSV pseudotyped with Ebola virus glycoprotein, triggered this scramblase-Akt outer membrane signaling pathway. VSV-S and native SARS-CoV-2 infection were inhibited by CIMSS. Thus, CIMSS uncovered unique extracellular kinase processes linked to HSV and SARS-CoV-2 entry.


Subject(s)
COVID-19 Drug Treatment , SARS-CoV-2 , Antiviral Agents/pharmacology , Glycoproteins/metabolism , Humans , Phosphatidylinositols , Phospholipase C gamma/metabolism , Phospholipid Transfer Proteins , Proto-Oncogene Proteins c-akt/metabolism , Spike Glycoprotein, Coronavirus , Staurosporine/pharmacology , Viral Envelope Proteins/metabolism
3.
PLoS Comput Biol ; 18(1): e1009778, 2022 01.
Article in English | MEDLINE | ID: covidwho-1634452

ABSTRACT

The clinical outcome of SARS-CoV-2 infection varies widely between individuals. Machine learning models can support decision making in healthcare by assessing fatality risk in patients that do not yet show severe signs of COVID-19. Most predictive models rely on static demographic features and clinical values obtained upon hospitalization. However, time-dependent biomarkers associated with COVID-19 severity, such as antibody titers, can substantially contribute to the development of more accurate outcome models. Here we show that models trained on immune biomarkers, longitudinally monitored throughout hospitalization, predicted mortality and were more accurate than models based on demographic and clinical data upon hospital admission. Our best-performing predictive models were based on the temporal analysis of anti-SARS-CoV-2 Spike IgG titers, white blood cell (WBC), neutrophil and lymphocyte counts. These biomarkers, together with C-reactive protein and blood urea nitrogen levels, were found to correlate with severity of disease and mortality in a time-dependent manner. Shapley additive explanations of our model revealed the higher predictive value of day post-symptom onset (PSO) as hospitalization progresses and showed how immune biomarkers contribute to predict mortality. In sum, we demonstrate that the kinetics of immune biomarkers can inform clinical models to serve as a powerful monitoring tool for predicting fatality risk in hospitalized COVID-19 patients, underscoring the importance of contextualizing clinical parameters according to their time post-symptom onset.


Subject(s)
Antibodies, Viral/blood , COVID-19 , SARS-CoV-2/immunology , Adult , Aged , Aged, 80 and over , Biomarkers/blood , COVID-19/diagnosis , COVID-19/epidemiology , COVID-19/immunology , COVID-19/therapy , Computational Biology , Diagnosis, Computer-Assisted , Female , Humans , Male , Middle Aged , Prognosis , Spike Glycoprotein, Coronavirus/immunology , Young Adult
4.
J Org Chem ; 86(13): 8843-8850, 2021 07 02.
Article in English | MEDLINE | ID: covidwho-1267987

ABSTRACT

3'-Deoxy-3',4'-didehydro-cytidine triphosphate (ddhCTP) is a novel antiviral molecule produced by the enzyme viperin as part of the innate immune response. ddhCTP has been shown to act as an obligate chain terminator of flavivirus and SARS-CoV-2 RNA-dependent RNA polymerases; however, further biophysical studies have been precluded by limited access to this promising antiviral. Herein, we report a robust and scalable synthesis of ddhCTP as well as the mono- and diphosphates ddhCMP and ddhCDP, respectively. Identification of a 2'-silyl ether protection strategy enabled selective synthesis and facile purification of the 5'-triphosphate, culminating in the preparation of ddhCTP on a gram scale.


Subject(s)
Antiviral Agents , COVID-19 , Cytidine Triphosphate , Humans , Proteins , RNA, Viral , SARS-CoV-2
5.
mSphere ; 6(2)2021 04 21.
Article in English | MEDLINE | ID: covidwho-1197233

ABSTRACT

The coronavirus disease 2019 (COVID-19) global pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) continues to place an immense burden on societies and health care systems. A key component of COVID-19 control efforts is serological testing to determine the community prevalence of SARS-CoV-2 exposure and quantify individual immune responses to prior SARS-CoV-2 infection or vaccination. Here, we describe a laboratory-developed antibody test that uses readily available research-grade reagents to detect SARS-CoV-2 exposure in patient blood samples with high sensitivity and specificity. We further show that this sensitive test affords the estimation of viral spike-specific IgG titers from a single sample measurement, thereby providing a simple and scalable method to measure the strength of an individual's immune response. The accuracy, adaptability, and cost-effectiveness of this test make it an excellent option for clinical deployment in the ongoing COVID-19 pandemic.IMPORTANCE Serological surveillance has become an important public health tool during the COVID-19 pandemic. Detection of protective antibodies and seroconversion after SARS-CoV-2 infection or vaccination can help guide patient care plans and public health policies. Serology tests can detect antibodies against past infections; consequently, they can help overcome the shortcomings of molecular tests, which can detect only active infections. This is important, especially when considering that many COVID-19 patients are asymptomatic. In this study, we describe an enzyme-linked immunosorbent assay (ELISA)-based qualitative and quantitative serology test developed to measure IgG and IgA antibodies against the SARS-CoV-2 spike glycoprotein. The test can be deployed using commonly available laboratory reagents and equipment and displays high specificity and sensitivity. Furthermore, we demonstrate that IgG titers in patient samples can be estimated from a single measurement, enabling the assay's use in high-throughput clinical environments.


Subject(s)
Antibodies, Viral/blood , COVID-19 Serological Testing/methods , COVID-19/diagnosis , COVID-19/immunology , SARS-CoV-2/immunology , Adolescent , Adult , Aged , Antibody Specificity , COVID-19/epidemiology , COVID-19 Serological Testing/statistics & numerical data , Case-Control Studies , Cohort Studies , Enzyme-Linked Immunosorbent Assay/methods , Enzyme-Linked Immunosorbent Assay/statistics & numerical data , Epidemiological Monitoring , Female , Humans , Immunoglobulin A/blood , Immunoglobulin G/blood , Male , Middle Aged , Pandemics , Seroepidemiologic Studies , Spike Glycoprotein, Coronavirus/immunology , Young Adult
6.
JCI Insight ; 6(4)2021 02 22.
Article in English | MEDLINE | ID: covidwho-1039949

ABSTRACT

Convalescent plasma with severe acute respiratory disease coronavirus 2 (SARS-CoV-2) antibodies (CCP) may hold promise as a treatment for coronavirus disease 2019 (COVID-19). We compared the mortality and clinical outcome of patients with COVID-19 who received 200 mL of CCP with a spike protein IgG titer ≥ 1:2430 (median 1:47,385) within 72 hours of admission with propensity score-matched controls cared for at a medical center in the Bronx, between April 13 and May 4, 2020. Matching criteria for controls were age, sex, body mass index, race, ethnicity, comorbidities, week of admission, oxygen requirement, D-dimer, lymphocyte counts, corticosteroid use, and anticoagulation use. There was no difference in mortality or oxygenation between CCP recipients and controls at day 28. When stratified by age, compared with matched controls, CCP recipients less than 65 years had 4-fold lower risk of mortality and 4-fold lower risk of deterioration in oxygenation or mortality at day 28. For CCP recipients, pretransfusion spike protein IgG, IgM, and IgA titers were associated with mortality at day 28 in univariate analyses. No adverse effects of CCP were observed. Our results suggest CCP may be beneficial for hospitalized patients less than 65 years, but data from controlled trials are needed to validate this finding and establish the effect of aging on CCP efficacy.


Subject(s)
Antibodies, Neutralizing/administration & dosage , Antibodies, Viral/administration & dosage , COVID-19/therapy , SARS-CoV-2/immunology , Adult , Age Factors , Aged , Aged, 80 and over , Antibodies, Neutralizing/blood , Antibodies, Neutralizing/immunology , Antibodies, Viral/blood , Antibodies, Viral/immunology , COVID-19/immunology , COVID-19/mortality , COVID-19/virology , Female , Hospital Mortality , Humans , Immunization, Passive/methods , Male , Middle Aged , New York City/epidemiology , Propensity Score , Retrospective Studies , Spike Glycoprotein, Coronavirus/immunology , Treatment Outcome , COVID-19 Serotherapy
7.
ACS Omega ; 6(1): 85-102, 2021 Jan 12.
Article in English | MEDLINE | ID: covidwho-1028803

ABSTRACT

Coronavirus disease 2019 (COVID-19) is a global health crisis caused by the novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), and there is a critical need to produce large quantities of high-quality SARS-CoV-2 Spike (S) protein for use in both clinical and basic science settings. To address this need, we have evaluated the expression and purification of two previously reported S protein constructs in Expi293F and ExpiCHO-S cells, two different cell lines selected for increased protein expression. We show that ExpiCHO-S cells produce enhanced yields of both SARS-CoV-2 S proteins. Biochemical, biophysical, and structural (cryo-EM) characterizations of the SARS-CoV-2 S proteins produced in both cell lines demonstrate that the reported purification strategy yields high-quality S protein (nonaggregated, uniform material with appropriate biochemical and biophysical properties), and analysis of 20 deposited S protein cryo-EM structures reveals conformation plasticity in the region composed of amino acids 614-642 and 828-854. Importantly, we show that multiple preparations of these two recombinant S proteins from either cell line exhibit identical behavior in two different serology assays. We also evaluate the specificity of S protein-mediated host cell binding by examining interactions with proposed binding partners in the human secretome and report no novel binding partners and notably fail to validate the Spike:CD147 interaction. In addition, the antigenicity of these proteins is demonstrated by standard ELISAs and in a flexible protein microarray format. Collectively, we establish an array of metrics for ensuring the production of high-quality S protein to support clinical, biological, biochemical, structural, and mechanistic studies to combat the global pandemic caused by SARS-CoV-2.

SELECTION OF CITATIONS
SEARCH DETAIL